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Efficient tumour formation by single
human melanoma cells
Elsa Quintana1*, Mark Shackleton1*, Michael S. Sabel2, Douglas R. Fullen3, Timothy M. Johnson4 & Sean J. Morrison1

A fundamental question in cancer biology is whether cells with tumorigenic potential are common or rare within human
cancers. Studies on diverse cancers, including melanoma, have indicated that only rare human cancer cells (0.1–0.0001%)
form tumours when transplanted into non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice. However,
the extent to which NOD/SCID mice underestimate the frequency of tumorigenic human cancer cells has been uncertain.
Here we show that modified xenotransplantation assay conditions, including the use of more highly immunocompromised
NOD/SCID interleukin-2 receptor gamma chain null (Il2rg2/2) mice, can increase the detection of tumorigenic melanoma
cells by several orders of magnitude. In limiting dilution assays, approximately 25% of unselected melanoma cells from 12
different patients, including cells from primary and metastatic melanomas obtained directly from patients, formed tumours
under these more permissive conditions. In single-cell transplants, an average of 27% of unselected melanoma cells from
four different patients formed tumours. Modifications to xenotransplantation assays can therefore dramatically increase the
detectable frequency of tumorigenic cells, demonstrating that they are common in some human cancers.

Traditionally, many cancer cells have been considered to have tumori-
genic potential, even though no assay has yet demonstrated that a high
percentage of single human cancer cells can form tumours. In contrast,
the cancer stem-cell model has suggested that only small subpopula-
tions of cancer cells have tumorigenic potential, based on experiments
in which human cancer cells were xenotransplanted into NOD/SCID
mice. For example, only one in a million (0.0001%) human melanoma
cells is tumorigenic in NOD/SCID mice1. Indeed, most human cancers
have only rare (,0.1%) tumorigenic/leukaemogenic cells (also called
cancer-initiating cells or cancer stem cells) when transplanted into
NOD/SCID or other highly immunocompromised mice1–11.
Nonetheless, recent studies of mouse haematopoietic malignancies
have raised the question of whether NOD/SCID assays underestimate
the frequency of human cancer-initiating cells12–14. Indeed, human
leukaemias exhibit a modestly higher frequency of leukaemogenic cells
when assayed in mice that are more highly immunocompromised than
NOD/SCID mice15,16, although leukaemogenic cells still represent only
1% of cells in one such model17. The critical question is whether optimi-
zation of xenotransplantation assays could reveal that some human
cancers actually have very common cells with tumorigenic potential
despite only having rare tumorigenic cells in NOD/SCID mice.

The question of whether cells with tumorigenic potential are common
or rare within human cancers has fundamental implications for therapy.
If tumorigenic cells represent small minority populations, as suggested
by the evidence supporting the cancer stem-cell model, improved anti-
cancer therapies may be identified based on the ability to kill these cancer
stem cells rather than the bulk population of non-tumorigenic cancer
cells18,19. Alternatively, if cells with tumorigenic potential are common, it
will not be possible to treat cancer more effectively or to understand
cancer biology better by focusing on small minority subpopulations.

Melanoma-initiating cells are rare in NOD/SCID mice

Melanoma-initiating (tumorigenic) cells were reported to be rare
based on the observation that only 1 in 1,090,000 human metastatic

melanoma cells formed tumours within 8 weeks of transplantation
into NOD/SCID mice1. To assess this, we transplanted 102–107 freshly
dissociated melanoma cells obtained directly from seven patients
subcutaneously into NOD/SCID mice (see Supplementary Table 1
for more information on tumours). Palpable tumours were evident
in some mice 8 weeks after injection of cells from four of seven mel-
anomas (Fig. 1A, B). Limiting dilution analysis20 indicated that the
average frequency of cells that formed tumours within 8 weeks of
transplantation into NOD/SCID mice was 1 in 837,000 (Fig. 1C),
confirming the published estimate1. However, most tumours took
more than 8 weeks to develop (Fig. 1A). On average, tumours first
became palpable after 11.4 6 3.8 weeks (mean 6 s.d.), or 14.3 6 7.6
weeks for tumours that arose from fewer than 10,000 injected cells.
Variability was high, but the average frequency of cells that formed
tumours within 32 weeks was 1 in 111,000 (Fig. 1C; P , 0.0001). The
frequency of melanoma-initiating cells is therefore significantly under-
estimated when tumour formation is monitored for only 8 weeks.

Modified assay reveals more tumorigenic cells

Some normal human haematopoietic cells engraft more efficiently in
NOD/SCID mice lacking the interleukin-2 gamma receptor (NOD/
SCID Il2rg2/2) compared with NOD/SCID mice, owing in part to
the lack of natural-killer cell activity in NOD/SCID Il2rg2/2

mice21–24. NOD/SCID Il2rg2/2 mice have also been used to study
cancer arising from human cell lines25,26 or human leukaemias15,27.
We thus compared human melanoma growth in NOD/SCID mice
and NOD/SCID Il2rg2/2 mice to test whether more tumorigenic cells
could be detected in more highly immunocompromised NOD/SCID
Il2rg2/2 mice. Xenografted melanoma cells (human melanomas
grown in NOD/SCID mice) from five patients were dissociated, then
live human cells were isolated by flow cytometry (excluding mouse
haematopoietic and endothelial cells; Fig. 2a) and transplanted side-
by-side into NOD/SCID Il2rg2/2 and NOD/SCID mice (Fig. 2b).
Tumours grew faster in NOD/SCID Il2rg2/2 mice (Fig. 2b and
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Supplementary Fig. 1), and an increased (P , 0.05) frequency of
melanoma-initiating cells was observed in NOD/SCID Il2rg2/2 mice
compared with NOD/SCID mice in every tumour tested
(Supplementary Fig. 2). Two melanoma specimens obtained directly
from patients (465 and 481) also exhibited a significantly (P , 0.05)
higher frequency of melanoma-initiating cells in NOD/SCID
Il2rg2/2 mice (Supplementary Fig. 2).

To test whether NOD/SCID Il2rg2/2 mice selected for growth of
more aggressive clones, we transplanted cells from tumours grown in
NOD/SCID Il2rg2/2 mice back into NOD/SCID versus NOD/SCID
Il2rg2/2 recipients. The frequency of detectable tumorigenic cells in
these tumours went back down in NOD/SCID mice (Supplementary
Fig. 3a), demonstrating that heritable changes in the frequency of
melanoma-initiating cells did not occur as a result of having grown in
NOD/SCID Il2rg2/2 mice. An increased xenogeneic immune res-
ponse probably contributes to reduced tumorigenesis by melanoma
cells in NOD/SCID mice compared with NOD/SCID Il2rg2/2 mice.

We next tested whether further improvements could be made in
melanoma cell engraftment. Co-injection with Matrigel28 increases
tumour formation by cancer cell lines29,30 and enhances the engraftment
of primary human epithelial cancer cells in immunocompromised
mice6,31. To test the effect of Matrigel on the ability to detect tumori-
genic melanoma cells, we isolated live human melanoma cells by flow
cytometry (Fig. 2a) from xenografts derived from three patients. The
same cell preparations were transplanted into NOD/SCID Il2rg2/2

mice after mixing with either vehicle (see Methods) or vehicle with
Matrigel. Tumour cells injected with Matrigel produced tumours
that grew faster than cells injected with vehicle alone (Fig. 2c and
Supplementary Fig. 4a), and limiting dilution analysis revealed that
in every case more melanoma cells were tumorigenic in Matrigel
(Supplementary Fig. 4b).

To quantify the combined effect of the individual assay improve-
ments described above, we performed side-by-side transplantation of
live melanoma cells isolated by flow cytometry from xenografted
tumours from three different patients. The same cell preparations
were either mixed with vehicle and injected into NOD/SCID mice or
mixed with Matrigel and injected into NOD/SCID Il2rg2/2 mice. In
every case, we observed much higher frequencies of tumorigenic cells
in the NOD/SCID Il2rg2/2 mice. On average, more than 5,000-fold
more cells exhibited tumorigenic activity under the modified assay
conditions, in which an average of 1 in 9 human melanoma cells
formed tumours (Fig. 2d). These results indicate that xenotransplan-
tation assays can be modified to detect much higher than expected
frequencies of human cells with tumorigenic potential.

Tumorigenic potential is common in melanoma

To ensure that our modified assay conditions did not somehow
confer tumorigenic capacity on normal human cells, we injected
10,000 primary human melanocytes and/or 100,000 primary human
mesenchymal stem cells with Matrigel into NOD/SCID Il2rg2/2

mice. These injections did not lead to the formation of tumours
(Fig. 3a). The frequency of tumorigenic melanoma cells also did
not increase with passaging in mice (Supplementary Fig. 4c).
Therefore, this xenotransplantation assay does not confer tumori-
genic potential on human cells. Consistent with this, serial trans-
plantation experiments demonstrated that the increased
tumorigenicity of melanoma cells in NOD/SCID Il2rg2/2 mice did
not reflect a heritable change in the transplanted cells themselves
(Supplementary Fig. 3a).

To determine whether xenografted melanomas consistently
exhibit high frequencies of tumorigenic cells, we tested five addi-
tional tumour samples in an independent series of experiments,
including some tumours that exhibited rare tumorigenic cells in
NOD/SCID mice (Fig. 1). In each case, live human melanoma cells
were isolated by flow cytometry (Fig. 2a) and injected with Matrigel
into NOD/SCID Il2rg2/2 mice. Palpable tumours from the injection
of eight cells were first detected 10 6 2 weeks after injection. Every
tumour exhibited a high frequency of tumorigenic cells (range 1 in 21
to 1 in 5 cells), averaging 1 in 9 cells (Fig. 3b).

To assess whether melanoma cells obtained directly from patients
also contain a high frequency of cells with tumorigenic potential, we
assessed cells obtained from six patients. These included four meta-
static melanomas and two primary cutaneous melanomas. Live mel-
anoma cells were isolated by flow cytometry, excluding human
haematopoietic (CD451 or glycophorinA1) and endothelial cells
(CD311), which collectively represented 50 6 33% of cells in
tumours obtained directly from patients. These excluded cells were
confirmed to be haematopoietic and endothelial cells rather than
melanoma cells by microscopy, and were greatly depleted of tumori-
genic activity when transplanted (data not shown). The melanoma
cells isolated by flow cytometry were mixed with Matrigel and
injected into NOD/SCID Il2rg2/2 mice. On average, palpable
tumours from the injection of 10 cells were first detected 13 6 4
weeks after injection. Every tumour exhibited a high frequency of
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Figure 1 | Only rare human melanoma cells form tumours in NOD/SCID
mice. A, Tumour development after subcutaneous injection of
unfractionated primary melanoma cells directly from seven patients into
NOD/SCID mice. Dots represent the times after injection at which
individual tumours were first palpable and are coloured according to cell
dose. Crosses are injections that failed to form tumours. Dotted line
indicates 8 weeks after injection. B, All tumours were diagnosed as metastatic
melanoma by clinical pathology (see Supplementary Table 1 for more
information). The tumours that formed in mice (a, arrow) became large,
grew quickly once they were palpable and were histologically similar to the
patient tumours from which they were derived. Flow cytometry
demonstrated that most tumour cells expressed human HLA (b; dotted line
represents unstained control). Some tumours were highly pigmented
(c) whereas others contained variable pigmentation (d) or were amelanotic
(scale bar, 1 cm). Sections stained with haematoxylin and eosin through the
same tumours showed pigmented cells (e, f, see arrows; bars, 25mm).
Cytospun cells contained melanin, as indicated by Fontana-Masson staining
(g, h, arrows; bars, 25 mm), and showed widespread S100b staining (i, j), a
marker used to diagnose melanoma40. C, Limiting dilution analyses of the
frequency of tumorigenic melanoma cells in Fig. 1A at 8 weeks or 32 weeks
after transplantation (*P , 0.0001).
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tumorigenic cells, with an average of 1 in 4 injected cells forming a
tumour based on limiting dilution analysis (Fig. 3c). In tumours
obtained directly from patients 492, 501 and 509 (the last a cutaneous
primary tumour), every injection (6/6) of only 10 cells produced a
tumour (Fig. 3c).

We have thus performed injections of small numbers of melanoma
cells from 12 different patients and have not yet found a tumour that
contained rare tumorigenic cells. Tumorigenic cells were common in
all tumours, irrespective of whether they were derived from xenografts
or directly from patients, and whether they were from primary cut-
aneous or metastatic melanomas.

Tumorigenesis by single, unselected melanoma cells

To our knowledge, no study has yet demonstrated that a high per-
centage of single cells from a spontaneously occurring human cancer
has the potential to form tumours in vivo. To assess this, we sorted
live human melanoma cells by flow cytometry from xenografted
tumours obtained from four different patients, then deposited one
cell per well in Terasaki plates (well volume 10 ml). Wells were visually
confirmed to contain a single cell, then mixed with Matrigel and
injected into NOD/SCID Il2rg2/2 mice (Fig. 4a). Depending on

the patient, 12–65% of single cells formed tumours (Fig. 4b).
Overall, 69 tumours (27%) developed from 254 single-cell injections.
This demonstrates that xenotransplantation assays can be improved
to the point where single human melanoma cells can engraft and
form tumours in vivo, confirming that cells with tumorigenic poten-
tial are common within human melanomas.

Additional modifications to xenotransplantation assays may fur-
ther improve the detection of human cells able to form tumours, such
that 25% could remain an underestimate of the percentage of mela-
noma cells with tumorigenic potential. Because some melanoma cells
are fated to undergo cell death or senescence as a result of deleterious
genetic changes or proximity to necrotic areas, it is possible that most
melanoma cells that are not fated to undergo cell death or senescence
have tumorigenic potential. It also remains possible that some mel-
anomas, particularly early-stage primary tumours, may contain less
frequent tumorigenic cells than observed in our studies.

Tumorigenic cells are phenotypically heterogeneous

To assess whether tumorigenic melanoma cells are phenotypically
distinct from melanoma cells that fail to form tumours, we examined
the expression of more than 50 surface markers on melanomas
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Figure 2 | Modifications to the
xenotransplantation assay reveal that many
more human melanoma cells have tumorigenic
potential than detected in NOD/SCID mice.
a, Live human melanoma cells were isolated from
xenografted tumours by flow cytometry. After
gating to eliminate debris and dead cells,
additional gates were drawn to select human
HLA1 cells and to exclude mouse haematopoietic
(CD45 and TER119) and endothelial (CD31)
cells (middle panel). The human HLA1 cells
consistently formed tumours upon
transplantation into immunocompromised mice
whereas mouse haematopoietic and endothelial
cells did not (data not shown). b, Tumour
development after side-by-side subcutaneous
injections of 4,000 human melanoma cells from a
xenograft derived from patient 308 into NOD/
SCID or NOD/SCID Il2rg2/2 mice. c, Tumour
development after side-by-side injections of 400
human melanoma cells from a xenograft derived
from patient 205 cells into NOD/SCID Il2rg2/2

mice, with or without Matrigel. Photographs in
b and c show resulting tumours at the time of
analysis (bars, 1 cm). Similar experiments
conducted with xenografted and non-
xenografted tumours from several patients
demonstrated that a significantly higher
frequency of human melanoma cells formed
tumours when injected into NOD/SCID Il2rg2/2

mice (Supplementary Fig. 2) or with Matrigel
(Supplementary Fig. 4b). The tumours were also
palpable earlier and grew faster (Supplementary
Figs 1 and 4a). d, Limiting dilution analyses of
tumours that arose after 8 weeks in NOD/SCID
or NOD/SCID Il2rg2/2 mice from the side-by-
side transplantation of melanoma cells (derived
from xenografts) mixed with vehicle or Matrigel,
respectively. In all cases, melanoma-initiating
cells were significantly (*P , 0.05) more frequent
in the modified assay and represented 1 in 5 to 1
in 15 cells.
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derived from several patients (Supplementary Table 2). These
included markers of other cancer stem-cell populations, melano-
cytes, melanoma, neural-crest derivatives and other cell types.
Fifteen of these markers (A2B5, c-kit, CD44, CD49B, CD49D,
CD49f, CD54, CD133, CD166, E-cadherin, HNK-1, L1CAM,
MCAM, N-cadherin and p75) were heterogeneously expressed by
melanoma cells from multiple patients and were tested for the ability
to distinguish tumorigenic from non-tumorigenic melanoma cells in
vivo (Supplementary Table 2). In each case, melanoma cells were
fractionated by flow cytometry (except CD133, which was sometimes
fractionated using magnetic beads as in previous studies10,32) and cells
that expressed different levels of the indicated markers were injected
into NOD/SCID Il2rg2/2 mice. In every case, tumours arose from all
fractions of cells. We found no marker that distinguished tumori-
genic from non-tumorigenic cells (Supplementary Table 2). Detailed
results are shown for CD49f (a6 integrin, a marker expressed by many
different stem cells33) and L1CAM (which is associated with CD133
expression in glioma stem cells34) in Supplementary Fig. 5.

A previous study found that 1 in 120,735 (0.00083%) ABCB51

metastatic melanoma cells formed tumours in NOD/SCID mice, a

tenfold enrichment over unfractionated cells1. Because ABCB5
expression has been shown to correlate with the expression of
CD166 and CD133 (ref. 35), we tested whether CD166 or CD133 could
enrich tumorigenic melanoma cells in the modified xenotransplanta-
tion assay (Supplementary Fig. 6). The frequency of CD1331 cells in
tumours from 12 different patients was consistently lower (usually
lower than 5%) than the frequency of tumorigenic cells in the same
tumours (5–20%; Supplementary Fig. 6b). Moreover, CD1331 cells
were not enriched for tumorigenic melanoma cells. Both CD1331 and
CD1332 fractions from two different melanomas exhibited very high
frequencies of tumorigenic cells (Supplementary Fig. 6c). Flow cyto-
metry indicated that all of the resulting tumours contained both
CD1331 and CD1332 cells, irrespective of whether they were derived
from CD1331 or CD1332 cells (data not shown). Both CD1661 and
CD1662 fractions also contained very high frequencies of tumorigenic
melanoma cells (Supplementary Fig. 6f). We have therefore been
unable to identify any phenotypic differences that distinguish tumori-
genic from non-tumorigenic melanoma cells. These results raise the
possibility that markers that enrich rare cells with tumorigenic poten-
tial in NOD/SCID mice may fail to distinguish tumorigenic from non-
tumorigenic cells in assays that detect much higher frequencies of
tumorigenic cells, though more work will be required to test this fully.

Discussion

Our data demonstrate that modifications in xenotransplantation
assays can dramatically increase—by several orders of magnitude—
the detectable frequency of cells with tumorigenic potential. This
means that some cancers that appear to have rare tumorigenic cells
in NOD/SCID mice actually have very common cells with tumori-
genic capacity under other conditions. Other cancers may still have
infrequent tumorigenic cells, even when studied under optimized
conditions, but the frequency and phenotypic diversity of these cells
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may be considerably greater than currently thought. Efforts to optim-
ize the xenotransplantation of human cancer cells will be necessary to
identify and study the full spectrum of human cancer cells capable of
contributing to disease progression.

It is important to note that neither our study nor previous cancer
stem-cell studies have addressed which cells actually contribute to
tumour growth and disease progression in patients. These studies
address the potential of cancer cells to proliferate extensively and
to form tumours/leukaemias, not their actual fate within patients.
Depending on how different the tumour environment is within
patients compared with mouse models, it is possible that different
cancer cells form tumours in mouse models than in human patients.
Thus, although we observe a high percentage of melanoma cells that
have the potential to proliferate extensively and form new tumours, it
is possible that an even greater, or a much smaller, fraction of mel-
anoma cells actually contributes to disease progression in patients.

Although most cancer stem-cell studies have detected only rare
cells with tumorigenic capacity, it has recently been pointed out that
leukaemogenic/tumorigenic cells do not necessarily have to be rare
for cancers to follow a cancer stem-cell model17. Our observation that
NOD/SCID xenotransplantation can dramatically underestimate the
frequency of tumorigenic cells in at least some human cancers does
not necessarily mean that such cancers will not have intrinsically
different populations of tumorigenic and non-tumorigenic cells.
Having said that, the frequency of tumorigenic cells in human mel-
anoma is much higher than reported for any cancer previously sug-
gested to follow a cancer stem-cell model, and we have not yet been
able to identify phenotypic differences between melanoma cells that
form tumours and those that do not. If markers that distinguish
tumorigenic from non-tumorigenic melanoma cells in optimized
xenotransplantation assays are identified in future, it will be import-
ant to test whether they reflect epigenetic differences between cells (as
envisioned under the cancer stem-cell model) or genetic/envir-
onmental differences between cells.

Although cells with tumorigenic potential are likely to be much
more frequent in most human cancers than estimated based on
NOD/SCID transplantation, we believe the available evidence con-
tinues to support the conclusion that some human cancers follow a
cancer stem-cell model. For example, data from the syngeneic trans-
plantation of mouse acute myeloid leukaemia (AML)36 and the trans-
plantation of human AMLs into improved mouse models17 continue
to suggest that many AMLs have small, intrinsically distinct subpo-
pulations of AML-initiating cells. Extensive clinical experience with
germ-cell cancers proves that therapies that eliminate the undiffer-
entiated subset of cancer cells can cure patients, even if differentiated
cancer cells are left behind37,38. Nonetheless, careful optimization of
xenotransplantation assays will probably yield a more nuanced view
in which some cancers contain small subpopulations of cancer-ini-
tiating cells, whereas others contain common tumorigenic cells with
little evidence of hierarchical organization. In both cases it will be
critical to identify all cancer cells that have the potential to contribute
to disease in patients in order to develop more effective therapies.

METHODS SUMMARY
Tumour cell preparation. Melanoma specimens were obtained from patients

according to protocols approved by the Institutional Review Board of the

University of Michigan Medical School (IRBMED approval numbers 2004-

1058 and 2000-0713). Fresh tumour tissue was mechanically dissociated, enzy-

matically digested and filtered to obtain a single-cell suspension.

Cell labelling and sorting. Cells were stained with directly conjugated antibod-

ies to human CD45, human CD31 and glycophorin A (to eliminate haemato-

poietic and endothelial cells from tumours obtained directly from patients) or

mouse CD45, mouse CD31, Ter119 and human leukocyte antigen (HLA)-A, -B,

-C (to eliminate mouse haematopoietic and endothelial cells and select human

cells from xenografted tumours). Cells were resuspended in 10mg ml21 4,6-

diamidino-2-phenylindole (DAPI) to label dead cells and sorted on

FACSVantage SE or FACSAria flow cytometers. Some samples were labelled with

anti-CD133 antibody and separated magnetically using a CD133 Cell Isolation

Kit (Miltenyi Biotec). When testing other markers, cells were usually labelled

with unconjugated primary antibodies (see Supplementary Table 2) and then

with directly conjugated secondary antibodies before staining with the directly

conjugated antibodies described above.

Transplantation of human melanoma cells. After sorting, cells were counted

and re-suspended in staining medium (L15 medium containing 1 mg ml21 BSA,

1% penicillin/streptomycin and 10 mM HEPES (pH7.4)), with or without 25%

Matrigel (BD Biosciences). Subcutaneous injections of human melanoma cells

were performed in NOD.CB17-Prkdcscid/J (NOD/SCID) and NOD.CB17-

Prkdcscid Il2rgtm1Wjl/SzJ (NOD/SCID Il2rg2/2) mice (Jackson Laboratories)

according to protocols approved by the Committee on the Use and Care of

Animals at the University of Michigan (protocol number 9055).

Statistics. Limiting dilution analyses were performed based on Bonnefoix et al.39,

using the limdil function of the ‘StatMod’ package (author G.K. Smyth, http://

bioinf.wehi.edu.au/software/limdil/), part of the R statistical software project

(http://www.r-project.org). Melanoma-initiating cell frequencies were com-

pared using likelihood ratio tests.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Cell preparation. Tumours were mechanically dissociated with a McIlwain

tissue chopper (Mickle Laboratory Engineering Co.) before sequential enzymatic

digestion in 200 U ml21 collagenase IV (Worthington) for 20 min followed by

0.05% trypsin-EGTA for 5 min, both at 37 uC. DNase (50–100 U ml21) was

added to reduce clumping of cells during digestion. Cells were filtered (40-mm

cell strainer) to obtain a single-cell suspension. Dead cells and debris were

reduced by density centrifugation (1.1 g ml21 Optiprep, Sigma) and/or magnetic

bead separation (Dead Cell Removal Kit; Miltenyi Biotec) as necessary. Primary

human melanocytes41 and mesenchymal stem cells42 were cultured as described.
Cell labelling and sorting. All antibody labelling of cells was performed for

20 min on ice, followed by washing and centrifugation. Secondary antibodies

were conjugated to phycoerythrin (goat anti-mouse IgG or IgM, goat anti-rat

IgG or goat anti-rabbit IgG; Jackson ImmunoResearch). Primary isotype con-

trols followed by the same secondary antibodies were used to set background.

Cells were subsequently stained with directly conjugated antibodies to human

CD45 (HI30-APC, BD Biosciences), human CD31 (WM59-APC, eBiosciences)

and Glycophorin A (HIR2-APC, Biolegend) (for tumours obtained directly from

patients) or mouse CD45 (30-F11-APC, eBiosciences), mouse CD31 (390-APC,

Biolegend), Ter119 (TER-119-APC, eBiosciences) and human HLA-A,B,C

(G46-2.6-FITC, BD Biosciences) (for xenograft tumours) to select live human

melanoma cells and to exclude endothelial and haematopoietic cells. Cells were

re-suspended in 10 mg ml21 DAPI (Sigma) and sorted on a FACSVantage SE-

dual laser, three line flow cytometer or a FACSAria Cell Sorter (Becton

Dickinson). After sorting, an aliquot of sorted cells was always re-analysed to

check for purity, which was usually greater than 95%. Magnetic cell separation

using the CD133 Cell Isolation Kit (Miltenyi Biotec) was performed according to

the manufacturer’s instructions.
Identification of single melanoma cells. Sorted cells were diluted and aliquoted

into 10-ml microwells (Thermo Fisher Scientific). Plates were centrifuged at 450g

for 30 s and wells containing single cells were identified by phase-contrast micro-

scopy. In control experiments, the presence of microscopically identified single

cells was confirmed by Acridine Orange staining, which demonstrated a single

nucleus in 90/90 cases. Cell doublets could be identified easily, were rare (7 of 312

wells examined) and were discarded. Wells containing single cells were trans-

ferred to a syringe containing Matrigel before injection. Cell transfer to the

syringe was confirmed by observing the absence of a cell in the well it came from.

Transplantation of melanoma cells. Subcutaneous injections were performed

into each flank and the interscapular region of each mouse. Tumour formation

was evaluated regularly by palpation of injection sites, and tumour diameters

were measured with callipers. Mice were monitored for up to 32 weeks after

injection. In cases where a tumour became palpable at only one injection site and

was causing the mouse distress, that tumour was surgically removed to allow

continued evaluation of other injection sites. Tumours were only evident at

injection sites and we never observed subcutaneous metastases. To confirm this,

we performed a single subcutaneous injection of 200 cells from tumour 205 into

each of six NOD/SCID Il2rg2/2 mice after mixing in Matrigel and observed only

one tumour per mouse at the injection site. The presence of human melanomas

was always confirmed at necropsy based on gross examination and marker

expression.

Histopathology and immunostaining. Portions of melanoma tumours used in

experiments were fixed in 10% neutral buffered formalin, paraffin embedded,

sectioned and stained with haematoxylin and eosin for histopathology analysis.

Paraffin-embedded tumours were confirmed as melanomas by staining for S100

and HMB45 expression after quenching endogenous peroxidase activity.

Binding of anti-S100 antibody (DAKO) was performed for 30 min at room

temperature, detected by anti-rabbit secondary (30 min at room temperature)

and revealed using DAB chromagen. Binding of HMB45 antibody (DAKO) was

performed for 30 min at room temperature after antigen retrieval with protei-

nase K, detected using the M.O.M. immunodetection kit (Vector Laboratories)

and revealed using DAB. S100- and HMB45-stained slides were counterstained

with haematoxylin. For staining of sorted cells, cells from tumours were cytos-

pun (18g for 6 min) onto slides after fixation with 4% paraformaldehyde for

5 min at room temperature. For immunofluorescence, slides were rinsed in PBS

and blocked in goat serum solution (PBS containing 5% goat serum, 1% BSA

and 0.3% Triton X-100) for 1 h to reduce non-specific antibody binding.

Incubation with S-100b antibody (Sigma, diluted 1:200 in goat serum solution)

was performed overnight at 4 uC, followed by secondary goat anti-mouse IgG1

Alexa 488 (Invitrogen) for 2 h at room temperature. Slides were counterstained

with DAPI for 10 min at room temperature, then mounted in fluorescent

mounting solution (DAKO). For detection of melanin pigment, the Fontana-

Masson method was used43. Slides were microwaved for 1 min in 2.5% Fontana

silver nitrate solution (Sigma), before rinsing and toning with 0.2% gold chloride

for 2 min. After rinsing, slides were incubated in 5% sodium thiosulphate

(Sigma) for 2 min, washed and nuclei were stained with DAPI. Slides were

mounted in DAKO fluorescent mounting solution.

Statistics. Differences between mean times to tumour palpability were com-

pared using unpaired t-tests. Tumour growth rates were determined by calculat-

ing averaged linear regression slopes of the diameters of each tumour at each

time point, monitored for at least 10 days and displayed with dot points repre-

senting the mean (6s.d.) of the diameters of all tumours palpable at the indi-

cated time points.

41. Fernandez, Y. et al. Differential regulation of noxa in normal melanocytes and
melanoma cells by proteasome inhibition: therapeutic implications. Cancer Res.
65, 6294–6304 (2005).

42. Wang, Z. et al. Ablation of proliferating marrow with 5-fluorouracil allows partial
purification of mesenchymal stem cells. Stem Cells 24, 1573–1582 (2006).

43. Bancroft, J. D. & Stevens, A. Theory and Practice of Histological Techniques
(Churchill Livingstone, 1990).
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SUPPLEMENTARY TABLES 

 

Supplementary table 1. Melanomas from 17 of 19 patients tested grew in 

immunocompromised mice and could almost always be serially passaged. 

 
7 of 9 tumors (patients 193 – 214 and 308 – 376) obtained directly from patients were 

successfully established in NOD/SCID mice. All of the 10 tumors obtained directly from 

patients that were initially injected into NOD/SCID IL2Rγnull mice were successfully 

established (patients 405 – 509). These included 4 cutaneous melanomas: 1 locally 

recurrent lesion*, 1 cutaneous metastasis§ and 2 primary cutaneous lesions† that 

presented with lymph node metastases. Only one tumor failed to retransplant (3rd 

generation of cells from patient 326 transplanted into NOD/SCID mice) out of 95 total 

attempts. We have therefore not detected significant numbers of tumors that could not 

be passaged. Moreover, the vast majority of tumors grew rapidly once palpable; we 

rarely observed tumors that remained small (<1cm) when the mice died. None of the 

patients had been treated other than with surgery, except for patient 465 who received 

adjuvant interferon.  

 

no. tumors propagated / no. tumors attempted 

xenograft generation patient age/ 
sex 

AJCC 
clinical 
stage 

tumor site 

1 2 3 4 5 6 7 8 9 
193 62/M III Lymph Node 1/1 3/3 1/1 2/2 3/3 2/2 3/3   
205 78/M IV Subcutaneous 1/1 2/2 4/4 5/5 4/4 4/4 6/6 3/3 1/1 

214 51/M III Lymph Node 1/1 5/5 5/5 1/1 1/1 2/2 1/1 4/4  

220 72/M III Lymph Node 0/1         

261 80/M III Subcutaneous 0/1         

308 76/F III Lymph Node 1/1 3/3 6/6 3/3 3/3 2/2    
320 41/M III Lymph Node 1/1 1/1 1/1 2/2      

326 43/M III Subcutaneous 1/1 1/1 0/1       

376 68/M III Lymph Node 1/1 1/1        

405 29/M III Lymph Node 1/1 2/2 1/1       

409 48/M III Lymph Node 1/1 1/1        
465 61/F IV Subcutaneous 1/1         

481 67/M III Cutaneous* 1/1 1/1 1/1       

487 54/M IV Cutaneous§ 1/1 1/1        

491 41/F III Lymph Node 1/1 1/1        

492 40/M III Lymph Node 1/1 1/1        
498 83/M III Cutaneous† 1/1         

501 71/M III Lymph Node 1/1         

509 79/M III Cutaneous† 1/1         

   TOTAL: 17/19 23/23 19/20 13/13 11/11 10/10 10/10 7/7 1/1 
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Supplementary table 2: A number of markers are heterogeneously expressed by 

melanoma cells from multiple patients, but none of the markers tested so far in 

tumor formation assays clearly distinguishes tumorigenic from non-tumorigenic 

cells. 
 

% marker + in vivo test 
patient tumors formed marker clone source 

193 205 214 308 405 481 491 492 

tested 
in 

vivo? 
marker 
-/low 

marker 
+ 

A2B5 A2B5-105 Chemicon 16% 96% 74% 23% 99% 95% 18% 94% Y (n=7) + + 
CD9 RPM.7 BDPharmingen 92% 98% 98% - - 84% 49% 82% N   
CD20 2H7 eBiosciences 0% 0% 0% 0% - 0% 0% 0% N   
CD24 HIS50 BDPharmingen 1% 0% 2% 2% 8% 21% 0% 0% N   
CD29 MEM-101A eBiosciences 100% 100% 100% 66% 100% 83% 78% 92% N   
CD44 515 BDPharmingen 70% 99% 100% 73% 100% 88% 61% 100% Y (n=1) + + 
CD49 b 12F1-H6 BDPharmingen 75% 73% 76% 76% - 47% 63% 85% Y (n=1) + + 
CD49 d 9F10 eBiosciences 39% 72% 52% 61% 8% 0% 3% 78% Y (n=4) + + 
CD49 e IIA1 BDPharmingen 97% - - 76% 36% 2% 2% 35% N   
CD49 f GoH3 BDPharmingen 98% 0% 0% 100% - 89% 68% 93% Y(n=2) + + 
CD54 HA58 eBiosciences 67% 99% 99% 86% 100% 69% 80% 89% Y (n=2) + + 
CD63 H5C6 DSHB* 48% 94% 90% 80% 99% 87% 57% 79% N   
CD133 AC133 MACS 0% 0% 2% 1% 3% 1% 5% 0% Y(n=4) + + 
CD150 A12(7D4) eBiosciences 3% 0% 9% - - - - - N   
CD166 3A6 BDPharmingen 38% 68% 88% 77% 3% 60% 0% 24% Y(n=5) + + 
Ckit YB5.B8 eBiosciences 0% 70% 2% 15% 8% 55% 0% 7% Y (n=2) + + 
Cmet eBioclone97 eBiosciences 0% - - 0% 0% 0% 0% 0% N   
Cripto #89633 R&D Systems 2% 0% 6% 5% - 5% 2% 3% N   
E-Cadherin HECD-1 Zymed 0% 88% 76% 91% 3% 29% 0% 65% Y (n=1) + + 
HNK1 hybridoma David 4% 99% 2% 99% 26% 20% 0% 0% Y (n=5) + + 
L1CAM 5G3 BDPharmingen 9% 29% 42% 94% 94% 12% 49% 61% Y (n=4) + + 
L6 D1-D2 Chemicon 7% - - - 91% - - - N   
MCAM P1H12 BDPharmingen 62% 25% 98% 99% 80% 67% 19% 100% Y (n=2) + + 
MDR1 MM4.17 Chemicon 0% - 19% 0% - 24% 0% 0% N   
MMA hybridoma DSHB* 0% 0% 0% 0% - - - - N   
NCAM SP2/0 DSHB* - - - - 0% 0% 0% 0% N   
N-Cadherin GC4 Sigma 0% - 4% 3.7% 3% 1.7% 0% 0% Y (n=1) + + 
NrCAM polyclonal abCAM 1% - - - 33% 23% 1% 2% N   
O4 hybridoma David 32% 0% 0% - - 90% 0% 18% N   
p75 NGFR5 Biosource 58% 3% 60% 3% 10% 2% 7% 23% Y (n=10) + + 
SSSEA-4 SP2/0 DSHB* - - 0% - - 0% 0% 0% N   
stro-1 NS1-Ag4-1 DSHB* 0% 0% 15% - - - - - N   
VE- 16B1 eBiosciences - 0% 0% - - 0% 0% 1% N   
CD2 S5.5 Caltag 0% - 0% - - - - - N   
CD4 S3.5 Caltag 0% - 0% - - - - - N   
CD7 CD7-6B7 Caltag 0% - 0% - - - - - N   
CD8 3B5 Caltag 0% - 0% - - - - - N   
CD13 TUK 1 Caltag 25% 0% 0% - - - - - N   
CD14 biG 53 Caltag 1% - - -  - - - N   
CD26 2A6 eBiosciences 6% 94% 0% - - 0% 0% 70% N   
CD30 HRS-4 Caltag 6% - 0% - - - - - N   
CD33 WM53 BDPharmingen - - 4% - - - - - N   
CD50 TP1/25.1 Caltag 0% - - - - - - - N   
CD52 CF1D12 Caltag 0% - 0% - - - - - N   
CD73 AD2 BDPharmingen 6% - - - - - - - N   
CD90 5E10 BDPharmingen 6% - - - - - - - N   
CD105 43A3 Biolegend 2% - - - - - - - N   
CD140a alphaR1 BDPharmingen 40% - 0% - - - - - N   
CD147 8D12 eBiosciences - 94% 100% - - 77% 62% 100% N   
GD2 P3x63 Ag8.653 DSHB* - - - - 0% 0% 0% 0% N   
DSHB*: Developmental Studies Hybridoma Bank 
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SUPPLEMENTARY FIGURES AND LEGENDS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 1. Melanomas became palpable earlier and grew faster in 

NOD/SCID IL2Rγγγγnull mice as compared to NOD/SCID mice. Upper panels show that 

the times to first palpability for tumors derived from cells isolated from 5 separate 

xenografted melanomas were significantly longer (*p < 0.05, Student’s t-test) in 

NOD/SCID mice (blue) as compared to NOD/SCID IL2Rγnull mice (red). Dots indicate 
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individual tumors and lines indicate means. Lower panels show the average linear 

regression slopes for the diameter of each tumor monitored for at least 10 days 

(mean±s.d. is shown for time points at which multiple tumors were available to 

evaluate). Tumor size thus usually increased more quickly in NOD/SCID IL2Rγnull mice 

(red) as compared to NOD/SCID mice (blue) after tumors became palpable. Each panel 

shows data from the lowest cell dose that formed tumors in both mouse strains. 
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Supplementary Figure 2. Many more melanoma cells were tumorigenic in 

NOD/SCID IL2Rγγγγnull mice as compared to NOD/SCID mice. Limiting dilution analyses 

of tumors that arose in NOD/SCID or NOD/SCID IL2Rγnull mice from the side-by-side 

transplantation of human melanoma cells obtained from either xenografted melanomas 

or directly from patients. Tumor formation was monitored for 32 weeks after 

transplantation. Melanoma cells obtained from xenografted tumors were isolated by 

flow-cytometry as in Fig. 2a. Melanoma cells obtained directly from patients were 

similarly isolated by flow-cytometry, except that human instead of mouse hematopoietic 

(CD45 and glycophorin A) and endothelial (CD31) cells were excluded. In all cases, the 

detectable frequency of melanoma-initiating cells was significantly (*p<0.05) higher in 

NOD/SCID IL2Rγnull mice. CI: confidence interval.  
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Supplementary Figure 3: The increased tumorigenicity of melanoma cells in 

NOD/SCID IL2Rγγγγnull mice as compared to NOD/SCID mice was determined by a 

more permissive environment for tumor formation rather than by heritable 

changes in the tumor as a result of growth in NOD/SCID IL2Rγγγγnull mice. When 

melanoma cells derived from a xenografted tumor that arose in NOD/SCID mice were 

injected side-by-side into NOD/SCID and NOD/SCID IL2Rγnull mice, the frequency of 

tumorigenic cells was higher in NOD/SCID IL2Rγnull mice. To test whether this 

represented an effect of the environment in these mice or a heritable change within the 

tumor itself (selection for more tumorigenic cells), cells derived from one of the tumors 

that grew in a NOD/SCID IL2Rγnull mouse were retransplanted side-by-side into 

NOD/SCID and NOD/SCID IL2Rγnull mice. The cells continued to form fewer tumors in 

NOD/SCID mice. This demonstrates that more melanoma cells are tumorigenic in 

NOD/SCID IL2Rγnull mice, irrespective of whether the cells are derived from tumors 

grown in NOD/SCID mice, NOD/SCID IL2Rγnull mice, or even derived directly from 

patients. Tumor formation was monitored for 32 weeks after transplantation in all 

experiments.  
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Supplementary Figure 4. Transplantation of melanoma cells mixed with Matrigel 

revealed a higher frequency of tumorigenic cells, and tumors that became 

palpable earlier and grew faster. a, Melanoma cells mixed with Matrigel (red) 

generally formed tumors faster (upper panels, dots indicate individual tumors and lines 

indicate means, *p < 0.05) than melanoma cells injected without Matrigel (black) in 
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NOD/SCID IL2Rγnull mice. These tumors also tended to grow faster once they became 

palpable (lower panels). Each panel shows data from the lowest cell dose that formed 

tumors under both conditions. b, Limiting dilution analyses of tumors that arose in 

NOD/SCID IL2Rγnull mice (up to 26 weeks after transplantation) from melanoma cells 

that were derived from xenografts, isolated by flow-cytometry and injected with either 

vehicle alone (black) or vehicle plus Matrigel (red). Vehicle is the staining medium 

described in the Methods. In all cases, the detectable frequency of melanoma-initiating 

cells was significantly (*p<0.05) higher when melanoma cells were injected with 

Matrigel. As all injections with Matrigel developed tumors, we were only able to 

determine the lower 95% confidence limit of melanoma-initiating cell frequency for each 

tumor studied, rather than the limit dilution dose. CI: confidence interval. c, The 

frequency of tumorigenic melanoma cells in samples from 6 patients did not increase 

with passaging in NOD/SCID IL2Rγnull mice. The data in this table represent the tumors 

from which independent limit dilution analyses were performed in multiple generations 

of tumors using Matrigel and NOD/SCID IL2Rγnull mice. Generation P represents the 

frequency of tumorigenic cells among cells removed directly from patient tumors while 

each successive generation represents analyses of xenografted tumors. 
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Supplementary figure 5. CD49f and L1CAM do not distinguish tumorigenic from 

non-tumorigenic melanoma cells. Typical flow cytometric analyses of unfractionated 

melanoma cells from patients 491 (a) and 308 (c) stained with isotype control antibody 

and anti-CD49f (a) or anti-L1CAM (c) antibodies. Plots show live human melanoma 
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cells as in Fig. 2a. CD49f- and CD49f+ cells (b) and L1CAM- and L1CAM+ cells (d) 

isolated by flow cytometry from xenografted tumors were injected into NOD/SCID 

IL2Rγnull mice with Matrigel and monitored for up to 26 weeks. The data are from two 

independent experiments per marker. The frequency of tumorigenic cells in each 

fraction was calculated by limiting dilution analysis. All fractions exhibited a high 

frequency of tumorigenic cells, irrespective of marker expression. The various fractions 

of cells also did not significantly differ in terms of the time required for the formation of 

palpable tumors from the injection of 5 or 10 cells (CD49f-=8±2, CD49f+=10±2 weeks, 

L1CAM-= 9±1, L1CAM+=8±1 weeks; mean±s.d.). 
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Supplementary figure 6. CD133 and CD166 do not distinguish tumorigenic from 

non-tumorigenic melanoma cells. a, and d, Typical flow cytometric analyses of 

unfractionated melanoma cells from patient 308 (a) and 193 (d) stained with isotype 

control antibody and anti-CD133 (a) or anti-CD166 (d) antibodies. Plots show live 
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human melanoma cells as in Fig. 2a. Summary of CD133 (b) and CD166 (e) expression 

in unfractionated cells from melanomas derived from 12 patients, as evaluated by flow 

cytometry. ND means not determined. The frequency of CD133+ cells was almost 

always lower than the frequency of tumorigenic cells, indicating that CD133 could not 

distinguish tumorigenic from non-tumorigenic cells. Cells from xenografted tumors 

isolated based on CD133 (c) or CD166 (f) expression were transplanted into NOD/SCID 

IL2Rγnull mice after mixing with Matrigel and monitored for up to 26 weeks. The 

frequency of tumorigenic cells in each fraction was calculated by limiting dilution 

analysis. All fractions exhibited a high frequency of tumorigenic cells, irrespective of 

marker expression. The various fractions of cells also did not significantly differ in terms 

of the time required for the formation of palpable tumors from the injection of 10 cells 

(CD133-=11±2, CD133+=9±2 weeks, CD166-= 11±2, CD166+=8±5 weeks; mean±s.d.). 
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